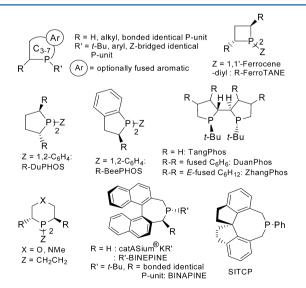


P-Stereogenic Phospholanes or Phosphorinanes from o-Biarylylphosphines: Two Bridges Not Too Far


Barbara Mohar,*,†,‡ Alen Čusak,‡ Barbara Modec,§ and Michel Stephan*,†,‡,||

Supporting Information

ABSTRACT: The discovery of a concise regiodivergent asymmetric route to nonclassical P-stereogenic 5- or 6-membered benzophosphacycles, under conditions-dependent radical (oxidative addition) versus anionic (S_N Ar) benzannulation, is reported.

■ INTRODUCTION

Enantiopure P-based organic compounds have been an ever-increasing research interest for over a century. In particular, numerous phosphines were designed by an array of synthetic strategies encompassing chiral pool skeletal modification, resolution or desymmetrization techniques, and asymmetric synthesis. Notably, backbone or P-atom stereogenic phosphacyclic motifs (Figure 1) have endowed excellent properties to transition-metal catalysts in a variety of asymmetric transformations. Stereogenic mono- or di- (bridged) carbocyclic phosphetanes, phospholanes, and phosphepanes are predominantly encountered in the literature in contrast to phosphorinanes. As

Figure 1. Generic representation of the most encountered cyclic phosphines in metal-catalyzed asymmetric hydrogenation and a selection thereof.

Of interest, the Jugé–Stephan asymmetric route to *P*-stereogenic phosphines via *P*-borane intermediates furnishes selectively either P-enantiomer in good overall yield. It relies upon the regio- and stereoselective two-step sequential displacement of the (+)- or (–)-ephedrine auxiliary from an enantiopure 1,3,2-oxazaphospholidine-2-borane complex (oxazaPB).

In our ongoing reasearch and development of (*P-ortho*-substituted aryl)-borne ethane-bridged diphosphines following the latter methodology, we explored the synthesis of *P-o*-biarylyl congeners. The preparation of the basic enantiomeric 1,2-bis[(o-biphenylyl)(phenyl)phosphino]ethane diphosphine has been accomplished from its *P*-oxide derivative via a Cumediated dimerization. Curiously, no reports existed on its preparation via the *P*-borane adduct variant, though *P-o*-biphenylyl-containing advanced *P*-borane intermediates have been earlier applied to various phosphines' syntheses by several research groups.

RESULTS AND DISCUSSION

Our low-temperature $CuCl_2$ -catalyzed attempted homocoupling of (S_P) -(o-biphenylyl)(methyl)(phenyl)phosphine-P-borane (3a) P- α -lithio anion gave rise, unfortunately, to a complex mixture (Scheme 1). Nevertheless, meticulous 1H and ^{31}P NMR analyses identified the unexpected P-cyclic 9-phenyl-9,10-dihydro-9-phosphaphenanthrene-P-borane. This new chiral structure consists of a phosphorinane-P-borane wedged in the bay area of the biphenylic system, further bridging the two aryls. Unsubstituted phosphorinanes are inherently more flexible than phospholanes but a biphenyl-fused moiety confers a conformational restriction to the overall structure.

Following this discovery, the potential reactivity of such (P-o-biarylyl)-substituted (methyl)phosphine-P-boranes was investigated. Thus, screening the (2R,4S,5R)-(+)-oxazaPB ring-

Received: March 21, 2013 Published: April 30, 2013

[†]National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia

[‡]EN-FIST CO, Dunajska 156, SI-1000 Ljubljana, Slovenia

[§]Department of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia

Scheme 1. Attempted Preparation of (S_p,S_p) -1,2-Bis[(o-biphenylyl)(phenyl)phosphino-P-borane]ethane Led to a Dibenzophosphorinane-P-borane^a

"Reagents and conditions: (i) s-BuLi, THF, -30 °C, 1 h, then CuCl₂, -30 °C, 1 h.

opening with various *o*-biarylyllithiums, a series of (*o*-biarylyl)-(*N*-ephedrino)(phenyl)phosphine-*P*-boranes **1a**—**h** was prepared in 22—90% isolated yields (Scheme 2, step i). ^{9,10}

Scheme 2^a

^aReagents and conditions: (i) *o*-Ar-PhLi, THF, -20 °C to rt (22-90% yield); (ii) MeOH, H₂SO₄, rt (40-83% yield); (iii) MeLi (1.2 equiv), THF, -20 °C (43-81% yield); (iv) *s*-BuLi (1.1 equiv) or MeLi (>1 equiv), THF, -30 °C to rt (81% yield for 4c from 3c); (v) MeLi (>2 equiv), THF, -20 °C to rt, o/n (73% yield for 4b; 79% for 4c; 10% for 4d with 78% of 3d; 77% for 4e); (vi) Et₂NH, 55-60 °C (93-99% yield); (vii) 50% aq H₂O₂, Me₂CO, 0 °C (98% yield).

Spectroscopic data (¹H, ¹³C, and ³¹P NMR) of the crude indicated the formation of **1a**–**g** as a single diastereomer, ^{9c} and X-ray crystal-structure analysis of **1b** confirmed the retention of *P*-configuration. ¹¹

Following, H_2SO_4 -promoted rt methanolysis of the (S_P) -aminophosphine-P-boranes $1\mathbf{a}-\mathbf{f}$ (step ii) provided after recrystallization enantiomerically pure methyl (R_P) -phosphinite-P-boranes $2\mathbf{a}-\mathbf{f}$ in 40-83% yield. 12,13

Low-temperature displacement of the P-OMe group of (R_p) -**2a**–**f** with MeLi (1.2 equiv) afforded (S_p)-(methyl)phosphine-*P*-boranes **3a**–**f** in 43–81% (step iii). ^{12b} It was noticed with methyl phosphinite-P-borane 2c that operating at up to rt with >2 equiv of MeLi (step v) induced the formation of the new 4methoxy-9-phenyl-9,10-dihydro-9-phosphaphenanthrene-Pborane heterocycle (4c) by annulation onto the o-biarylyl group. An identical result was obtained with the generated P- α lithio carbanion from the isolated (methyl)phosphine-P-borane 3c (step iv). Clearly, a ready intramolecular nucleophilic aromatic substitution (S_NAr) of the activated C_{sp2}-OMe group was occurring. This displacement is accelerated by the MeO coordinative nature and suitable proximal disposition vis-à-vis the strongly reactive P- α -lithio anion with carbocyclization as a net result. Alternatively, in a convenient one-pot conversion via in situ formation of the reactive species, crystalline unsymmetrical dibenzophosphorinane-P-boranes 4b,c,e were obtained in 73-79% yield upon treatment of 2b,c,e with excess (>2 equiv) MeLi (step v). 14 Under the same conditions, compound 2d gave a mixture of 4d (10%) and 3d (78%). Compound 4b was found to have ¹H and ³¹P NMR spectra identical to those of the phosphacycle of Scheme 1.

In view of the simultaneous determination of absolute P-configuration and anticipated axial chirality of 4, α -functionalization using (R)-styrene oxide was performed. Its condensation with the preformed P- α -lithio carbanion of 4c, 15 and subsequent BH_3 removal followed by P-oxidation, 16 furnished the P-oxide 7 which facilitated the growth of a single crystal (Scheme 3). X-ray crystal-structure analyses of 4c and 7 confirmed the (S_P) -configuration of 4c. With an identical M-atropisomery (or R_a) in both cases, the P-phenyl group occupies a less congested quasi-axial position. It is noteworthy that two structurally similar conformers (having M-atropisomery) were found in the 4c cell unit. The twisted axial orientation is locked in all cases. 17

Scheme 3. ORTEP Drawings of 4c (Left) and Its Derivative 7 (Right) at the 50% Probability Level and Preparation of 7^a

"Reagents and conditions: (i) s-BuLi, THF, -30 °C, then (R)-styrene oxide (70% yield); (ii) Et₂NH, 55-60 °C; (iii) 50% aq H₂O₂, Me₂CO, 0 °C (99% yield for two steps).

Scheme 4. Transformation Pathways of the P- α -Radical of (S_p) -3

Closing the synthetic sequence of Scheme 2, (S_P) -4b,c,e decomplexation under mild conditions in Et₂NH (55–60 °C) (step vi) furnished the corresponding homochiral dibenzophosphorinanes **5b,c,e** in 93–99% yield (^{31}P NMR $\delta \sim$ –40 ppm), and oxidation of **5c** gave **6c** (step vii). 14,16 The simplest free monophosphine **5b** was dubbed "6TwistP" alluding to its 6-membered twisted structure and reminiscent of the unexpected outcome of this chemistry.

In a second surprising turn of events, treatment of (S_p) -3c with s-BuLi and CuCl₂ did not lead to the expected dimerization product but instead gave the new unusual spiro[(2,6-dimethoxy-2,5-cyclohexadiene)-1,1'-(3-phenyl-3-phosphindane-P-borane)] chiral structure 8c (dubbed "5TwistP·BH₃") (Scheme 4).

This spiro benzophospholane-P-borane arose from favored P- α -radical trapping by the neighboring 2,6-dimethoxyphenyl ring and leading to its dearomatization. Analysis of this case coupled with Scheme 1 result with 3a (Scheme 3, R = R' = R'' = H) points out that, under the same reaction conditions, a switch in regioselectivity occurs depending on o'-MeO-substituents' availability on the top aryl. Investigating this reaction with 3b led to a complex mixture. Nevertheless, 1H and ^{31}P NMRs revealed the formation of a benzophospholane-P-borane 8b (^{31}P NMR $\delta \sim +32$ ppm; not isolated, with an unconfirmed geometry of the non-meso-cycle) and 4c but not 4b. Also, the spiro-dienonic structure (S_P)-8d was obtained from (S_P)-3d by loss of a CH₃ radical (Figure 2).

The polar cases experiments show that the P- α -radical preferentially adds intramolecularly onto the *ipso*-position of the top aryl furnishing a 5-membered ring (formal 5-*exo*-trig carbocyclization) if at least a substituent occupies an o'-position ($R'' \neq H$), and in its absence (R'' = H) addition on the neighboring o'-position prevails leading to a 6-membered ring (6-*endo*-trig). The formation of compounds 4b,c was accompanied by the partial recovery of starting 3. This could have arguably formed in part via intermolecular quench of the P-CH $_2$ radical by H-abstraction from the transient cyclic radical evolving toward 4. Such a pathway is excluded with 3c. ¹⁹

CONCLUSIONS

We have presented a controlled serendipitous divergent asymmetric synthesis of either 5- or 6-membered cyclic phosphine-*P*-boranes. The cascade reactions from methyl

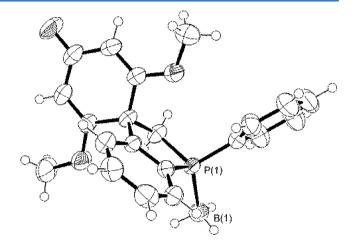


Figure 2. ORTEP drawing of (S_P) -8d at the 50% probability level.

phosphinite-*P*-boranes **2** providing the biphenyl-fused phosphorinane-*P*-boranes **4** and the radical-initiated dearomatizing spirocyclization toward benzophospholane-*P*-boranes **8** represent a new twist in *P*-stereogenic cyclic phosphines' synthesis. Such "chiral or achiral" frameworks constitute interesting precursors for the elaboration of new diversified families of *P*-heterocycles. The progress of this ongoing research will be communicated in due course.

■ EXPERIMENTAL SECTION

General Methods. All reactions were conducted under an inert atmosphere using anhydrous solvents. 1 H (300 MHz, internal Me₄Si), 13 C (75 MHz, internal CDCl₃; J_{C-P} is indicated), and 31 P NMR (120 MHz, external 85% H₃PO₄) were recorded for solutions in CDCl₃. High-resolution mass spectra were obtained with a Q-TOF instrument equipped with orthogonal Z-spray ESI interface. 2-Bromobiphenyl, 2′-bromo-2,6-dimethoxybiphenyl, 2′-bromo-2,6-dimethoxybiphenyl, 2′-bromo-2,6-dimethoxybiphenyl, 2′-bromo-2,6-dimethoxy-1-naphthaleneboronic acid, and (R)-styrene oxide (ee ≥98.0% (GC)) are commercially available. (2R,4S,5R)-(+)-3,4-Dimethyl-2,5-diphenyl-1,3,2-oxazaphospholidine-2-borane ((+)-oxazaPB derived from (1R,2S)-(−)-ephedrine), 2b 2′-bromo-2-methoxybiphenyl, 20 and 2′-bromo-2,4,6-trimethoxybiphenyl were prepared according to the literature.

2'-Bromo-2,6-dimethoxy-4-methylbiphenyl. To a solution of 1,3-dimethoxy-5-methylbenzene (11.00 g, 72.3 mmol) in THF (100 mL) was added under stirring n-BuLi (1.3 M in hexane, 56 mL) at rt. After 1 h, it was cooled to 0 °C, 1,2-dibromobenzene (17.05 g, 72.3

mmol) was slowly added, and the mixture was allowed to stir overnight at rt. After $\rm H_2O$ quenching and extraction with $\rm CH_2Cl_2$, the crude was purified by recrystallization (*i*- $\rm Pr_2O/CH_2Cl_2$) affording off-white crystals (11.50 g, 52%): mp 143–145 °C; R_f 0.49 (toluene/hexane 7:3); $^1\rm H$ NMR δ 2.42 (s, 3H), 3.72 (s, 6H), 6.47 (s, 2H), 7.14–7.24 (m, 2H), 7.30–7.36 (m, 1H), 7.64 (dd, J = 8, 1 Hz, 1H); $^1\rm ^3C$ NMR δ 22.2, 55.8, 104.9, 116.0, 125.4, 126.8, 128.3, 132.2, 132.5, 136.1, 139.6, 157.3; MS (ESI) m/z 307.0 (100) [M⁺ + H]; HRMS (ESI) calcd for $\rm C_{15}H_{16}^{79}BrO_2$ [M⁺ + H] 307.0334, found 307.0345.

2'-Bromo-2,6-dimethylbiphenyl. To a solution of 1-bromo-2-iodobenzene (8.49 g, 30.0 mmol) and Pd(PPh₃)₄ (1.04 g, 0.9 mmol) in toluene (80 mL) was added 2,6-dimethylbenzeneboronic acid (5.85 g, 39.0 mmol) in EtOH (40 mL) then aq Na₂CO₃ (19.08 g in 80 mL H₂O). The resulting mixture was stirred at 85 °C for 6 days. After toluene/H₂O extraction, the product was purified on silica gel eluting with hexane (R_f 0.40) and recrystallized (hexane/MeOH) at 0 °C to afford white crystals (4.93 g, 63%): mp 47–50 °C; ¹H NMR δ 1.98 (s, 6H), 7.09–7.22 (m, 5H), 7.32–7.37 (m, 1H), 7.66 (dd, J = 8, 1 Hz, 1H); ¹³C NMR δ 20.3, 123.9, 127.1, 127.6, 128.6, 130.5, 132.7, 135.8, 140.7, 141.7.

1-(2-Bromophenyl)-2-methoxynaphthalene. To a hot (85 °C) solution of 1-bromo-2-iodobenzene (4.24 g, 15.0 mmol), K_2CO_3 (4.15 g, 30.0 mmol), and $Pd(PPh_3)_4$ (0.35 g, 0.3 mmol) in EtOH (1 mL)/ H_2O (4 mL)/dioxane (10 mL) was added a solution of 2-methoxy-1-naphthaleneboronic acid (2.02 g, 10.0 mmol) in dioxane (10 mL) over 4 h. The resulting mixture was stirred at 85 °C for 2 days. The reaction was allowed to cool to rt, quenched with 3 M HCl and extracted with EtOAc. Purification of the residue on silica gel eluting with hexane/EtOAc 19:1 and recrystallization (CH_2Cl_2 /hexane) afforded white crystals (1.65 g, 50%): mp 119–121 °C; R_f 0.36 (hexane/EtOAc 19:1); ¹H NMR δ 3.84 (s, 3H), 7.19–7.43 (m, 7H), 7.72–7.76 (m, 1H), 7.79–7.85 (m, 1H), 7.90 (d, J = 9 Hz, 1H); ¹³C NMR δ 56.6, 113.6, 123.6, 124.1, 124.6, 125.3, 126.6, 127.2, 127.9, 128.8, 128.9, 129.7, 132.4, 132.6, 132.9, 137.7, 153.8; MS (ESI) m/z 312.0 (93) [M⁺]; HRMS (ESI) calcd for $C_{17}H_{13}^{-79}$ BrO [M⁺] 312.0150, found 312.0157

(*S*_p)-(Biphenyl-2-yl)[(1*R*,2*S*)-*N*-ephedrino](phenyl)phosphine *P*-Borane ((*S*_p)-1a). To a cold solution (-78 °C) of 2-bromobiphenyl (2.50 g, 10.7 mmol) in Et₂O (35 mL) was added *n*-BuLi (1.5 M in hexane, 7.2 mL). After being stirred at -78 °C for 2 h, the reaction mixture was warmed to -20 °C for 15 min. To this suspension at -78 °C was added a solution of (+)-oxazaPB (2.37 g, 8.3 mmol) in THF (20 mL) then the suspension allowed to warm to rt with overnight stirring. CH₂Cl₂/H₂O extraction followed by purification on silica gel eluting with toluene then toluene/EtOAc 19:1 (R_f 0.51) afforded white crystals (2.70 g, 74%): mp 104–106 °C; [α]²⁵_D +52.7 (c 1.2, CHCl₃) (S_p -enantiomer: [α]²⁰_D +64.9 (c 0.297, CH₂Cl₂)^{8a}); ¹H NMR δ 0.55–1.65 (br m, 3H), 0.68 (d, J = 7 Hz, 3H), 1.50 (br d, J = 4 Hz, 1H), 2.55 (d, J = 7 Hz, 3H), 3.94 (m, 1H), 4.84 (m, 1H), 7.13–7.49 (m, 17H), 7.64–7.72 (m, 2H). NMR data were consistent with those reported in the literature. ^{8a,b}

 (S_P) -[(1R,2S)-N-Ephedrino](2'-methoxybiphenyl-2-yl)-(phenyl)phosphine P-Borane ((S_P)-1b). To a cold solution (-78 $^{\circ}\text{C})$ of 2'-bromo-2-methoxybiphenyl (5.00 g, 19.0 mmol) in THF (200 mL) was added n-BuLi (1.5 M in hexane, 12.7 mL). After being stirred at -78 °C for 1 h, a solution of (+)-oxazaPB (4.16 g, 14.6 mmol) in THF (20 mL) was slowly added. Treatment as for 1a and purification on silica gel eluting with toluene then toluene/EtOAc 9:1 (R_f 0.53) followed by recrystallization (toluene/MeOH) afforded white crystals (7.13 g, 80%): mp 132–134 °C; $[\alpha]_{D}^{30}$ +80.9 (c 1.2, CHCl₃); ¹H NMR δ 0.40–1.55 (br m, 3H), 0.47 (d, J = 7 Hz, 1.2H), 1.13 (d, J = 7 Hz, 1.8H), 1.43 (br d, J = 4 Hz, 0.4H) 1.65 (br d, J = 4Hz, 0.6H), 2.50 (d, J = 7 Hz, 1.2H), 2.70 (d, J = 7 Hz, 1.8H), 3.63 (s, 1.8H), 3.71 (s, 1.2H), 3.80 (m, 0.4H), 4.10 (m, 0.6H), 4.81 (m, 1H), 6.58 (d, J = 8 Hz, 0.6H), 6.72-6.84 (m, 1.4H), 7.08-7.55 (m, 15H), 7.74 (m, 1H); 13 C NMR δ 9.5 (d, J = 6 Hz), 10.8 (d, J = 5 Hz), 31.3 (d, J = 4 Hz), 31.6 (d, J = 4 Hz), 54.7, 54.9, 57.7 (d, J = 10 Hz), 58.0 (d, J = 10 Hz), 78.3, 78.8, 109.9, 110.2, 119.0, 119.4, 125.5–133.9 (m), 142.4–143.7 (m), 156.0 (d, J = 2 Hz); ³¹P NMR δ +70.7 (br m); MS

(ESI) m/z 470.2 (56) [M⁺ + H]; HRMS (ESI) calcd for $C_{29}H_{34}BNO_{3}P$ [M⁺ + H] 470.2420, found 470.2419.

(*S*_P)-(2',6'-Dimethoxybiphenyl-2-yl)[(1*R*,2*S*)-*N*-ephedrino]-(phenyl)phosphine *P*-Borane ((*S*_P)-1c). From 2'-bromo-2,6-dimethoxybiphenyl (7.62 g, 26.0 mmol) following the procedure as for 1a. Purification on silica gel eluting with toluene then toluene/ EtOAc 9:1 (R_f 0.48) and recrystallization (toluene/MeOH) afforded white crystals (9.00 g, 90%). (*S*_P)-1c: mp 122–124 °C; [α]³⁰_D +14.7 (c 1.0, CHCl₃); ¹H NMR δ 0.57–1.56 (br m, 3H), 0.97 (d, J = 7 Hz, 3H), 1.80 (br d, J = 4 Hz, 1H), 2.65 (d, J = 8 Hz, 3H), 3.50 (s, 3H), 3.63 (s, 3H), 3.95 (m, 1H), 4.83 (m, 1H), 6.33 (d, J = 8 Hz, 1H), 6.42 (d, J = 8 Hz, 1H), 7.11–7.36 (m, 11H), 7.41–7.56 (m, 4H). NMR data were consistent with those reported in the literature. ^{10b} 2-Butyl-2',6'-dimethoxybiphenyl was also isolated: ¹H NMR δ 0.75 (t, J = 7 Hz, 3H), 1.17 (m, 2H), 1.40 (m, 2H), 2.35 (m, 2H), 3.69 (s, 6H), 6.63 (d, J = 8 Hz, 2H), 7.09 (m, 1H), 7.19–7.43 (m, 4H).

(*S*_P)-[(1*R*,2*S*)-*N*-Ephedrino](phenyl)(2',4',6'-trimethoxybiphenyl-2-yl)phosphine *P*-Borane ((*S*_P)-1d). From 2'-bromo-2,4,6-trimethoxybiphenyl (4.43 g, 13.7 mmol) following the procedure as for 1a. Purification on silica gel eluting with toluene and then toluene/ EtOAc 9:1 (R_f 0.38) and recrystallization (hexane/MeOH) afforded white crystals (4.79 g, 86%): mp 129–131 °C; [α]²⁵_D +11.9 (c 1.1, CHCl₃); ¹H NMR δ 0.45–1.50 (br m, 3H), 1.01 (d, J = 7 Hz, 3H), 1.72 (br d, J = 4 Hz, 1H), 2.66 (d, J = 8 Hz, 3H), 3.48 (s, 3H), 3.62 (s, 3H), 3.77 (s, 3H), 4.00 (m, 1H), 4.83 (m, 1H), 5.86 (d, J = 2 Hz, 1H), 5.96 (d, J = 2 Hz, 1H), 7.09–7.36 (m, 10H), 7.43–7.56 (m, 4H); ¹³C NMR δ 10.7 (d, J = 4 Hz), 31.7 (d, J = 2 Hz), 54.8, 55.1, 55.2, 57.7 (d, J = 9 Hz), 78.7 (d, J = 2 Hz), 89.8, 89.9, 110.8 (d, J = 3 Hz), 125.8–133.9 (m), 139.8 (d, J = 11 Hz), 142.7, 158.2, 158.3, 161.0; ³¹P NMR δ +71.7 (br m); MS (ESI) m/z 528.2 (38) [M⁺ – H]; HRMS (ESI) calcd for C_{31} H₃₆BNO₄P 528.2475 [M⁺ – H], found 528.2496.

(S_p)-(2',6'-Dimethoxy-4'-methylbiphenyl-2-yl)[(1R,2S)-N-ephedrino](phenyl)phosphine P-Borane ((S_p)-1e). From 2'-bromo-2,6-dimethoxy-4-methylbiphenyl (6.36 g, 20.7 mmol) following procedure as for 1a. Purification on silica gel eluting with toluene then toluene/EtOAc 9:1 (R_f 0.52) and recrystallization (toluene/MeOH) afforded white crystals (7.35 g, 90%): mp 140–143 °C; [α]²⁵_D +16.4 (c 1.0, CHCl₃); ¹H NMR δ 0.45–1.50 (br m, 3H), 0.98 (d, J = 7 Hz, 3H), 1.74 (br d, J = 4 Hz, 1H), 2.27 (s, 3H), 2.65 (d, J = 8 Hz, 3H), 3.48 (s, 3H), 3.61 (s, 3H), 3.99 (m, 1H), 4.81 (m, 1H), 6.09 (s, 1H), 6.19 (s, 1H), 7.09–7.34 (m, 10H), 7.43–7.53 (m, 4H); ¹³C NMR δ 10.5 (d, J = 4 Hz), 22.0, 31.7 (d, J = 2 Hz), 54.7, 55.1, 57.6 (d, J = 9 Hz), 78.6 (d, J = 2 Hz), 103.9, 115.1 (d, J = 3 Hz), 125.7–139.5 (m), 142.6, 157.3; ³¹P NMR δ +72.0 (br m); MS (ESI) m/z 514.3 (42) [M⁺ + H]; HRMS (ESI) calcd for $C_{31}H_{38}BNO_3P$ [M⁺ + H] 514.2682, found 514.2689.

 $(S_p)-(2',6'-Diisopropoxybiphenyl-2-yl)[(1R,2S)-N-ephedrino]-$ (phenyl)phosphine P-Borane ((Sp)-1f). From 2'-bromo-2,6-diisopropoxybiphenyl (8.00 g, 22.9 mmol) following procedure as for 1a. Purification on silica gel eluting with toluene then toluene/EtOAc 9:1 $(R_f 0.62)$ afforded a colorless syrup (7.93 g, 81%): $[\alpha]^{25}_{D}$ -40.4 (c 1.3, CHCl₃); ¹H NMR δ 0.45–1.55 (br m, 3H), 1.00 (d, J = 6 Hz, 3H), 1.03 (d, J = 7 Hz, 3H), 1.05 (d, J = 6 Hz, 3H), 1.14 (d, J = 6 Hz, 3H), 1.17 (d, J = 6 Hz, 3H), 1.86 (br s, 1H), 2.68 (d, J = 8 Hz, 3H), 4.06(m, 1H), 4.32 (m, 2H), 4.84 (d, J = 3 Hz, 1H), 6.31 (d, J = 8 Hz, 1H),6.33 (d, J = 8 Hz, 1H), 6.99-7.04 (m, 2H), 7.11-7.31 (m, 9H), 7.39(m, 1H), 7.45–7.57 (m, 3H); 13 C NMR δ 10.5 (d, J = 4 Hz), 21.9, 22.4, 22.5, 32.2 (d, *J* = 3 Hz), 57.6 (d, *J* = 10 Hz), 69.8, 70.9, 79.0 (d, *J* = 2 Hz), 105.4, 106.3, 121.0 (d, J = 3 Hz), 125.8–134.5 (m), 140.9 (d, J = 11 Hz), 142.7, 156.7, 156.8; ³¹P NMR δ +71.8 (br m); MS (ESI) m/z 556.3 (18) [M⁺ + H]; HRMS (ESI) calcd for C₃₄H₄₄BNO₃P [M⁺ + H] 556.3152, found 556.3142.

 (S_p) -(2',6'-Dimethylbiphenyl-2-yl)[(1*R*,2*S*)-*N*-ephedrino]-(phenyl)phosphine *P*-Borane ((S_p)-1g). From 2'-bromo-2,6-dimethylbiphenyl following procedure as for 1a. The organolithium was prepared as follows: to a cold solution (-78 °C) of 2'-bromo-2,6-dimethylbiphenyl (0.23 g, 0.88 mmol) in THF (10 mL) was added *t*-BuLi (1.5 M in pentane, 1.17 mL). After the solution was stirred at -78 °C for 30 min, the temperature was gradually raised to -50 °C to ensure complete lithiation. Purification on silica gel eluting with

toluene/hexane 4:1 and then toluene afforded ($R_{\rm p}$)-trans-($N_{\rm methylamino}$)(phenyl)(1-phenyl-1-propenyloxy)phosphine P-borane as white crystals (0.12 g, 73%). Further elution with toluene/EtOAc (19:1) then toluene/EtOAc 9:1 ($R_{\rm f}$ 0.56) afforded 1g as a white foam (61 mg, 22%): [α] $^{30}_{\rm D}$ -7.6 (c 1.0, CHCl $_{3}$); 1 H NMR δ 0.35–1.50 (br m, 3H), 1.04 (d, J = 7 Hz, 3H), 1.87 (s, 3H), 1.96 (s, 3H), 2.75 (d, J = 7 Hz, 3H), 3.96 (m, 1H), 4.99 (d, J = 3 Hz, 1H), 6.87 (d, J = 7 Hz, 1H), 6.95 (d, J = 7 Hz, 1H), 7.14–7.29 (m, 2H), 7.31–7.65 (m, 13H); 13 C NMR δ 10.3 (d, J = 5 Hz), 21.3, 21.4, 31.9 (d, J = 3 Hz), 57.8 (d, J = 10 Hz), 79.2, 125.8–136.6 (m), 140.0 (d, J = 3 Hz), 142.6, 146.2 (d, J = 14 Hz); 31 P NMR δ +72.2 (br m); MS (ESI) m/z 468.3 (100) [M⁺ + H]; HRMS (ESI) calcd for C_{30} H $_{36}$ BNOP [M⁺ + H] 468.2628, found 468.2638

(*R*_P)-*trans*-(*N*-Methylamino)(phenyl)(1-phenyl-1-propenyloxy)phosphine *P*-Borane: mp 65–68 °C; R_f 0.52 (toluene); $[\alpha]^{25}_D$ +63.6 (c 1.2, CHCl₃) ((S_P)-enantiomer, ^{9b} $[\alpha]^{25}_D$ –69.6 (c 1.0, CHCl₃)); ¹H NMR δ 0.23–1.30 (br m, 3H), 1.78 (dd, J = 7, 3 Hz, 3H), 2.30 (dd, J = 11, 6 Hz, 3H), 2.89 (m, 1H), 5.67 (dq, J = 7, 3 Hz, 1H), 7.29–7.41 (m, 3H), 7.43–7.54 (m, 5H), 7.76–7.83 (m, 2H); ³¹P NMR δ +105.3 (br m). NMR data were consistent with those reported in the literature. ^{9b}

(S_P)-[(1R,2S)-N-Ephedrino][2-(2-methoxynaphth-1-yl)phenyl](phenyl)phosphine P-Borane ((S_p) -1h). From 1-(2bromophenyl)-2-methoxynaphthalene (1.10 g, 3.51 mmol) following the procedure as for 1a. Purification on silica gel eluting with toluene then toluene/EtOAc 9:1 afforded a colorless solid foam (1.09 g, 90%). The compound was obtained as a mixture of two atropo-diastereomers in \sim 1:1 ratio as revealed by ¹H NMR: R_f 0.52 (toluene/EtOAc 9:1); $[\alpha]^{25}_{D}$ +16.0 (c 1.1, CHCl₃); ¹H NMR δ 0.35–1.25 (br m, 3H), 0.62 (d, J = 7 Hz, 1.4H), 0.83 (d, J = 7 Hz, 1.6H), 1.66 (br s, 1H), 2.61 (d, J)= 8 Hz, 1.6 H), 2.72 (d, I = 7 Hz, 1.4 H), 3.69 (s, 1.3 H), 3.75 - 3.76 (m, 1.4 H), 3.69 (s, 1.3 H), 3.75 - 3.76 (m, 1.4 H), 3.69 (s, 1.3 H), 3.75 - 3.76 (m, 1.4 H), 3.69 (s, 1.3 H), 3.75 - 3.76 (m, 1.4 H), 3.69 (s, 1.3 H), 3.75 - 3.76 (m, 1.4 H), 3.69 (s, 1.3 H), 3.75 - 3.76 (m, 1.4 H), 3.69 (s, 1.3 H), 3.75 - 3.76 (m, 1.4 H), 3.69 (s, 1.3 H), 3.75 - 3.76 (m, 1.4 H), 3.69 (s, 1.3 H), 3.75 - 3.76 (m, 1.4 H), 3.69 (s, 1.3 H), 3.75 - 3.76 (m, 1.4 H), 3.69 (s, 1.3 H), 3.75 - 3.76 (m, 1.4 H), 3.69 (s, 1.3 H), 3.75 - 3.76 (m, 1.4 H), 3.69 (s, 1.3 H), 3.75 - 3.76 (m, 1.4 H), 3.69 (s, 1.3 H), 3.75 - 3.76 (m, 1.4 H),1.8H), 3.89 (m, 0.5H), 4.66 (d, J = 4 Hz, 0.5H), 4.77 (d, J = 3 Hz, 0.5H), 6.94–7.69 (m, 20H); 13 C NMR δ 9.8 (d, J = 5 Hz), 10.4 (d, J =5 Hz), 32.0 (d, J = 2 Hz), 32.3 (d, J = 3 Hz), 55.2, 55.8, 57.5 (d, J = 10Hz), 57.8 (d, J = 9 Hz), 78.5, 79.1, 112.2, 112.5, 122.5–134.6 (m), 141.3 (d, J = 10 Hz), 141.5 (d, J = 11 Hz), 142.5, 153.86, 153.90; ³¹P NMR δ +72.0 (br m); MS (ESI) m/z 520.3 (100) [M⁺ + H]; HRMS (ESI) calcd for $C_{33}H_{36}BNO_2P$ [M⁺ + H] 520.2577, found 520.2563.

Methyl (R_p)-(Biphenyl-2-yl)(phenyl)phosphinite P-Borane ((R_p)-2a). To a solution of ((S_p)-1a (1.76 g, 4.00 mmol) in MeOH (30 mL) was added H₂SO₄ (96%, 0.40 g, 3.96 mmol) at rt under stirring. After being stirred for 1 day, the reaction mixture was filtered through a pad of silica gel and concentrated. Extraction with CH₂Cl₂/H₂O and purification on silica gel eluting with toluene/hexane 9:1 then toluene (R_f 0.76) and recrystallization (CH₂Cl₂/hexane) afforded white crystals (0.87 g, 71%): mp 119–121 °C; [α]²⁵_D –21.0 (α 1.2, CHCl₃) ((α)-enantiomer, ^{8a} [α]²⁰_D +17.4 (α 0.945, CH₂Cl₂), >99% ee (HPLC)); ¹H NMR δ 0.30–1.50 (br m, 3H), 3.56 (d, α) = 12 Hz, 3H), 6.89–6.93 (m, 2H), 7.10 (m, 2H), 7.17–7.38 (m, 7H), 7.45–7.56 (m, 2H), 8.05 (m, 1H); ³¹P NMR δ +109.7 (br m). NMR data were consistent with those reported in the literature. ^{8a,b}

Methyl (R_p)-(2'-Methoxybiphenyl-2-yl)(phenyl)phosphinite *P*-Borane ((R_p)-2b). From (S_p)-1b (2.11 g, 4.50 mmol) following the procedure as for 2a. Purification on silica gel eluting with toluene (R_f 0.49) and then toluene/EtOAc 19:1 and recrystallization (MeOH/hexane) afforded white crystals (1.25 g, 83%): mp 80–82 °C; [α]²⁵_D –2.2 (c 1.4, CHCl₃); ¹H NMR δ 0.30–1.50 (br m, 3H), 3.34 (s, 1.5H), 3.39 (s, 1.5H), 3.55 (d, J = 12 Hz, 1.5H), 3.57 (d, J = 12 Hz, 1.5H), 6.54 (m, 1H), 6.68–6.87 (m, 2H), 7.13–7.38 (m, 7H), 7.44–7.56 (m, 2H), 8.03–8.19 (m, 1H); ¹³C NMR δ 53.4 (d, J = 2 Hz), 53.7 (d, J = 2 Hz), 54.5, 54.6, 109.3, 109.8, 118.9, 119.2, 126.8–134.0 (m), 142.6 (d, J = 9 Hz), 142.9 (d, J = 5 Hz), 156.2, 156.4; ³¹P NMR δ +109.1 (br m); MS (ESI) m/z 335.1 (100) [M⁺ – H]; HRMS (ESI) calcd for $C_{20}H_{21}BO_2P$ [M⁺ – H] 335.1372, found 335.1377.

Methyl (R_p) -(2',6'-Dimethoxybiphenyl-2-yl)(phenyl)-phosphinite *P*-Borane ((R_p) -2c). From (S_p) -1c (8.00 g, 16.0 mmol) following the procedure as for 2a. Purification on silica gel eluting with toluene and then toluene/EtOAc (19:1) and recrystallization (CH₂Cl₂/hexane) afforded 2c as white crystals (4.63 g, 79%). Further elution with toluene/EtOAc 4:1 and recrystallization

(CH₂Cl₂/hexane) afforded (-)-(2',6'-dimethoxybiphenyl-2-yl)-(hydroxy)(phenyl)phosphine *P*-borane as white crystals (0.34 g, 6%). Further elution with EtOAc/MeOH and recrystallization (*i*-Pr₂O/CH₂Cl₂) afforded (-)-(2',6'-dimethoxybiphenyl-2-yl)(phenyl)-phosphine *P*-oxide as white crystals (0.54 g, 10%).

 $(R_{\rm p})$ -2c: mp 108–110 °C; R_f 0.35 (toluene); $[\alpha]^{30}_{\rm D}$ +38.6 (c 1.1, CHCl₃) ($R_{\rm p}$ -enantiomer, ^{10b} $[\alpha]_{\rm D}$ +28.4 (c 0.9, CH₂Cl₂)); ¹H NMR δ 0.30–1.45 (br m, 3H), 3.32 (s, 3H), 3.40 (s, 3H), 3.57 (d, J = 12 Hz, 3H), 6.26 (d, J = 8 Hz, 1H), 6.38 (d, J = 8 Hz, 1H) 7.10–7.37 (m, 7H), 7.48 (tt, J = 8, 2 Hz, 1H), 7.56 (tt, J = 7, 1 Hz, 1H), 8.16 (ddd, J = 12, 8, 1 Hz, 1H); ³¹P NMR δ +107.8 (br m). NMR data were consistent with those reported in the literature. ^{10b}

(–)-(2′,6′-Dimethoxybiphenyl-2-yl)(hydroxy)(phenyl)-phosphine *P*-Borane: mp 129–132 °C; R_f 0.52 (toluene/EtOAc 4:1); $[\alpha]^{25}_{\rm D}$ –11.3 (c 1.0, CHCl₃); ¹H NMR δ 0.40–1.60 (br m, 3H), 3.20 (s, 3H), 3.74 (s, 3H), 6.10 (d, J = 8 Hz, 1H), 6.63 (d, J = 8 Hz, 1H), 6.71 (br s, 1H), 7.05–7.24 (m, 7H), 7.57 (m, 2H), 8.50 (m, 1H); ¹³C NMR δ 54.8, 57.2, 105.0, 105.2, 119.0 (d, J = 3 Hz), 127.3–137.2 (m), 155.3, 157.4; ³¹P NMR δ +93.6 (br m); MS (ESI) m/z 351.1 (100) [M⁺ – H]; HRMS (ESI) calcd for $C_{20}H_{21}BO_3P$ [M⁺ – H] 351.1321, found 351.1314.

(-)-(2',6'-Dimethoxybiphenyl-2-yl)(phenyl)phosphine *P*-Oxide: mp 166–168 °C; R_f 0.46 (EtOAc); $[\alpha]_D^{30}$ –5.5 (c 1.3, CHCl₃); 1 H NMR δ 3.19 (s, 3H), 3.72, (s, 3H), 6.29 (d, J = 8 Hz, 1H), 6.59 (d, J = 8 Hz, 1H), 7.16–7.29 (m, 6H), 7.36–7.42 (m, 1H), 7.54–7.62 (m, 2H), 7.62 (d, $J_{\rm P-H}$ = 492 Hz, 1H), 8.19 (m, 1H); 13 C NMR δ 54.8, 55.6, 103.2, 103.5, 115.3 (d, J = 6 Hz), 127.3–132.6 (m), 137.4 (d, J = 12 Hz), 156.9, 157.4; 31 P NMR δ +20.1 (s); MS (ESI) m/z 339.1 (100) [M^+ + H]; HRMS (ESI) calcd for $C_{20}H_{20}O_3P$ [M^+ + H] 339.1150, found 339.1153.

Methyl (R_P) -(Phenyl)(2',4',6'-trimethoxybiphenyl-2-yl)phosphinite P-Borane ((R_p)-2d). From (S_p)-1d (2.06 g, 3.89 mmol) following the procedure as for 2a. Purification on silica gel eluting with toluene and then toluene/EtOAc 19:1 afforded 2d as white crystals (0.92 g, 60%). Further elution with toluene/EtOAc 9:1 then toluene/EtOAc 4:1 afforded (hydroxy)(phenyl)(2',4',6'-trimethoxybiphenyl-2-yl)phosphine P-borane as white crystals (0.15 g, 10%). (R_p)-2d: mp 136–138 °C; R_f 0.25 (toluene); $[\alpha]^{25}_D$ +46.6 (c1.1, CHCl₂); ¹H NMR δ 0.30–1.50 (br m, 3H), 3.29 (s, 3H), 3.35 (s, 3H), 3.57 (d, J = 12 Hz, 3H), 3.79 (s, 3H), 5.81 (d, J = 2 Hz, 1H), 5.91 (d, J = 2 Hz, 1H), 7.10 (m, 1H), 7.19–7.25 (m, 2H), 7.30–7.36 (m, 3H), 7.45 (m, 1H), 7.53 (m, 1H), 8.16 (m, 1H); 13 C NMR δ 53.5 (d, J = 2 Hz), 54.7, 54.8, 55.2, 89.3, 89.4, 109.9 (d, J = 3 Hz), 126.7-133.8 (m), 139.2 (d, J = 8 Hz), 158.3 (d, J = 5 Hz), 161.3; ^{31}P NMR δ +107.8 (br m); MS (ESI) m/z 395.2 (100) [M⁺ – H]; HRMS (ESI) calcd for C₂₂H₂₅BO₄P [M⁺ - H] 395.1584, found 395.1592.

(-)-(Hydroxy)(phenyl)(2',4',6'-trimethoxybiphenyl-2-yl)-phosphine *P*-Borane: mp 151–154 °C; R_f 0.45 (toluene/EtOAc 4:1); $[\alpha]_D^{30}$ –6.9 (c 1.1, CHCl₃); 1 H NMR δ 0.40–1.60 (br m, 3H), 3.17 (s, 3H), 3.68 (s, 3H), 3.77 (s, 3H), 5.64 (d, J = 2 Hz, 1H), 6.16 (d, J = 2 Hz, 1H), 6.62 (br s, 1H), 7.05–7.25 (m, 6H), 7.53 (m, 2H), 8.46 (m, 1H); 13 C NMR δ 54.7, 55.5, 57.2, 91.7, 92.0, 111.8 (d, J = 3.3 Hz), 127.2–135.1 (m), 137.3 (d, J = 2.0 Hz), 155.9, 158.0, 161.5; 31 P NMR δ +93.9 (br m); MS (ESI) m/z 381.1 (100) [M⁺ – H]; HRMS (ESI) calcd for $C_{21}H_{23}BO_4P$ [M⁺ – H] 381.1427, found 381.1428.

Methyl (R_p)-(2',6'-Dimethoxy-4'-methylbiphenyl-2-yl)-(phenyl)phosphinite *P*-Borane ((R_p)-2e). From (S_p)-1e (3.00 g, 5.8 mmol) following procedure as for 2a. Purification on silica gel eluting with toluene then toluene/EtOAc 19:1 and recrystallization (CH₂Cl₂/hexane) afforded white crystals (1.60 g, 73%): mp 121–123 °C; R_f 0.29 (toluene); [α]_D³⁰ +41.0 (c 1.1, CHCl₃); ¹H NMR δ 0.25–1.40 (br m, 3H), 2.34 (s, 3H), 3.31 (s, 3H), 3.39 (s, 3H), 3.57 (d, J = 12 Hz, 3H), 6.06 (s, 1H), 6.19 (s, 1H), 7.12 (m, 1H), 7.19–7.37 (m, 5H), 7.47 (m, 1H), 7.55 (m, 1H), 8.16 (m, 1H); ¹³C NMR δ 22.1, 53.6 (d, J = 2 Hz), 54.7, 54.8, 103.3, 103.8, 114.2 (d, J = 3 Hz), 126.7–133.9 (m), 139.4 (d, J = 7 Hz), 139.5, 157.4, 157.5; ³¹P NMR δ +107.7 (br m); MS (ESI) m/z 379.2 (100) [M⁺ – H]; HRMS (ESI) calcd for $C_{22}H_{25}BO_3P$ [M⁺ – H] 379.1634, found 379.1625.

Methyl (R_p)-(2',6'-Diisopropoxybiphenyl-2-yl)(phenyl)-phosphinite *P*-Borane ((R_p)-2f). From (S_p)-1f (1.97 g, 3.55

mmol) following the procedure as for 2a. Purification on silica gel eluting with toluene and then toluene/EtOAc 19:1 afforded 2f as white crystals (0.51 g, 40%). Further elution with toluene/EtOAc 4:1 then EtOAc afforded (-)-(2',6'-diisopropoxybiphenyl-2-yl)(phenyl)-phosphine *P*-oxide as white crystals (0.62 g, 45%).

(R_p)-2f: mp 84–86 °C; R_f 0.61 (toluene); [α]³⁰_D +17.1 (c 1.1, CHCl₃); ¹H NMR δ 0.25–1.40 (m, 3H), 0.99 (d, J = 6 Hz, 3H), 1.01 (d, J = 6 Hz, 3H), 1.03 (d, J = 6 Hz, 3H), 1.10 (d, J = 6 Hz, 3H), 4.17 (sep, J = 6 Hz, 1H), 4.30 (sep, J = 6 Hz, 1H), 6.30 (d, J = 8 Hz, 1H), 6.46 (d, J = 8 Hz, 1H), 7.07 (m, 1H), 7.13 (m, 1H), 7.21–7.28 (m, 2H), 7.31–7.40 (m, 2H), 7.43–7.51 (m, 3H), 7.90 (m, 1H); ¹³C NMR δ = 21.6, 21.9, 22.2, 22.3, 53.8 (d, J = 2 Hz), 69.6, 70.6, 105.4, 105.9, 120.6 (d, J = 3 Hz), 126.2–133.3 (m), 140.3 (d, J = 7 Hz), 156.6, 156.9; ³¹P NMR δ +109.3 (br m); MS (ESI) m/z 421.2 (100) [M⁺ – H]; HRMS (ESI) calcd for $C_{25}H_{31}BO_3P$ [M⁺ – H] 421.2104, found 421.2089.

(-)-(2',6'-Diisopropoxybiphenyl-2-yl)(phenyl)phosphine *P*-Oxide: mp 120–123 °C; R_f 0.58 (EtOAc); $[a]^{25}_D$ –15.7 (c 1.1, CHCl₃); ¹H NMR δ 0.81 (d, J = 6 Hz, 3H), 1.06 (d, J = 6 Hz, 3H), 1.09 (d, J = 6 Hz, 3H), 1.28 (d, J = 6 Hz, 3H), 4.06 (sep, J = 6 Hz, 1H), 4.42 (sep, J = 6 Hz, 1H), 6.34 (d, J = 8 Hz, 1H), 6.58 (d, J = 8 Hz, 1H), 7.12–7.39 (m, 7H), 7.50 (m, 2H), 7.75 (d, J_{P-H} = 507 Hz, 1H), 8.09 (m, 1H); ¹³C NMR δ 21.4, 21.8, 21.9, 22.0, 69.5, 70.9, 105.5, 106.0, 117.9 (d, J = 6 Hz), 126.7–132.8 (m), 137.9 (d, J = 12 Hz), 155.7, 156.2; ³¹P NMR δ +19.4 (s); MS (ESI) m/z 395.2 (100) [M⁺ + H]; HRMS (ESI) calcd for $C_{24}H_{28}O_{3}P$ [M⁺ + H] 395.1776, found 395.1766.

(*S*_p)-(Biphenyl-2-yl)(methyl)(phenyl)phosphine *P*-Borane ((*S*_P)-3a). To a cold solution (-20 °C) of (R_p)-2a (1.33 g, 4.34 mmol) in THF (15 mL) was added MeLi (1.6 M in Et₂O, 4 mL, 1.5 equiv) and the resulting mixture allowed to warm to rt, stirred overnight, and then quenched with H₂O. Extraction with CH₂Cl₂ and purification on silica gel eluting with hexane/EtOAc 19:1 and then hexane/EtOAc 9:1 (R_f 0.40) and recrystallization from hexane/CH₂Cl₂ afforded the title compound²² as white crystals (1.02 g, 81%): mp 120-122 °C; [α]²⁵_D +50.7 (α 1.1, CHCl₃) ((α)-enantiomer, and α 1.25 (α) = 54.8 (α 0.82, CHCl₃); (α)-enantiomer, and α 1.45 (br m, α) = 41.1 (α) (α) = 10 Hz, α) = 49.8 (α) = 7 Hz, 2H), 7.13 (α) = 7.40 (α) = 10 Hz, 3H), 6.90 (d, α) = 7 Hz, 2H), 7.13 (α) = 19 (d, α) = 41 Hz), 127.2 – 132.3 (α), 134.3 (d, α) = 15 Hz), 140.5 (d, α) = 3 Hz), 146.9 (d, α) = 4 Hz); α = 17 NMR α 0 +13.7 (br m).

(*S*_p)-(2'-Methoxybiphenyl-2-yl)(methyl)(phenyl)phosphine *P*-Borane ((*S*_p)-3b). From (*R*_p)-2b (1.30 g, 3.87 mmol) and MeLi (1.6 M in Et₂O, 2.9 mL, 1.2 equiv) at 0 °C. Workup as for 3a and purification on silica gel eluting with toluene/hexane 4:1 (*R*_f 0.44) and then toluene afforded white crystals (0.53 g, 43%): mp 93–96 °C; [α]³⁰_D +34.3 (*c* 1.3, CHCl₃); ¹H NMR δ 0.30–1.50 (br m, 3H), 1.47–1.54 (m, 3H), 3.39 (s, 1.3H), 3.55 (s, 1.7H), 6.56–6.68 (m, 2H), 6.88 (m, 0.5H), 7.00 (m, 0.5H), 7.14–7.55 (m, 9H), 7.89 (m, 0.5H), 8.10 (m, 0.5H); ¹³C NMR δ 11.0 (d, *J* = 42 Hz), 12.2 (d, *J* = 41 Hz), 54.7 (d, *J* = 9 Hz), 109.7, 110.1, 119.3, 119.5, 127.2–134.4 (m), 143.0 (d, *J* = 3 Hz), 143.1 (d, *J* = 4 Hz), 156.2, 156.5; ³¹P NMR δ +12.8 (br m); MS (ESI) m/z 319.1 (100) [M⁺ – H]; HRMS (ESI) calcd for $C_{20}H_{21}BOP$ [M⁺ – H] 319.1423, found 319.1414.

(S_p)-(2',6'-Dimethoxybiphenyl-2-yl)(methyl)(phenyl)-phosphine *P*-Borane ((S_p)-3c). From (R_p)-2c (2.00 g, 5.50 mmol) following the procedure as for 3b. Purification on silica gel eluting with hexane/EtOAc (9:1) and then hexane/EtOAc 3:1 (R_f 0.30) afforded a colorless foam (1.16 g, 60%): [α]²⁵_D -1.9 (c 1.2, CHCl₃); ¹H NMR δ 0.40–1.50 (br m, 3H), 1.52 (d, J = 10 Hz, 3H), 3.18 (s, 3H), 3.57 (s, 3H), 6.25 (dd, J = 8, 1 Hz, 1H), 6.48 (dd, J = 8, 1 Hz, 1H), 7.06–7.10 (m, 1H), 7.19–7.34 (m, 6H), 7.43 (tt, J = 8, 2 Hz, 1H), 7.51 (tt, J = 7, 2 Hz, 1H), 8.11 (ddd, J = 14, 8, 1 Hz, 1H); ³¹P NMR δ +11.3 (br m). NMR data were in accordance with those reported in the literature. ^{10b}

(S_p)-(Methyl)(phenyl)(2',4',6'-trimethoxybiphenyl-2-yl)-phosphine P-Borane ((S_p)-3d). From (R_p)-2d (1.00 g, 2.52 mmol) following the procedure as for 3b. Purification on silica gel eluting with hexane/EtOAc 9:1 afforded a yellow solid foam (0.777 g, 81%): R_f 0.27 (hexane/EtOAc 4:1); [α] $^{25}_D$ +8.5 (c 1.1, CHCl $_3$); 1 H NMR δ

0.30–1.50 (br m, 3H), 1.55 (d, J = 10 Hz, 3H), 3.19 (s, 3H), 3.56 (s, 3H), 3.83 (s, 3H), 5.83 (d, J = 2 Hz, 1H), 6.06 (d, J = 2 Hz, 1H), 7.07 (m, 1H), 7.22–7.51 (m, 8H) 8.08 (m, 1H); 13 C NMR δ 10.5 (d, J = 41 Hz), 54.7, 55.1, 55.3, 89.6, 89.7, 110.4 (d, J = 3 Hz), 127.0–134.8 (m), 139.4 (d, J = 3 Hz), 158.3, 158.3, 161.5; 31 P NMR δ +11.2 (br m); MS (ESI) m/z 379.2 (100) [M⁺ – H]; HRMS (ESI) calcd for $C_{22}H_{25}BO_3P$ [M⁺ – H] 379.1634, found 379.1628.

(*S*_p)-(2′,*6*′-Dimethoxy-4′-methylbiphenyl-2-yl)(methyl)-(phenyl)phosphine *P*-Borane ((*S*_p)-3e). From (*R*_p)-2e (0.71 g, 1.87 mmol) following the procedure as for 3b. Purification on silica gel eluting with toluene and then toluene/EtOAc 19:1 afforded white crystals (0.44 g, 64%): mp 106–109 °C; R_f 0.39 (hexane/EtOAc 4:1); $[\alpha]^{30}_{\rm D}$ +9.9 (c 1.2, CHCl₃); ¹H NMR δ 0.30–1.50 (br m, 3H), 1.52 (d, J = 10 Hz, 3H), 2.36 (s, 3H), 3.19 (s, 3H), 3.58 (s, 3H), 6.07 (s, 1H), 6.31 (s, 1H), 7.07 (m, 1H), 7.20–7.36 (m, 5H), 7.43 (m, 1H), 7.51 (m, 1H), 8.09 (m, 1H); ¹³C NMR δ 10.4 (d, J = 41 Hz), 22.2, 54.6, 55.0, 103.6, 103.9, 114.7 (d, J = 3 Hz), 126.9–134.8 (m), 139.5 (d, J = 3 Hz), 140.0, 157.3; ³¹P NMR δ +11.4 (br m); MS (ESI) m/z 363.2 (100) [M⁺ – H]; HRMS (ESI) calcd for C₂₂H₂₅BO₂P [M⁺ – H] 363.1685, found 363.1676.

(S_p)-(2', δ '-Diisopropoxybiphenyl-2-yl)(methyl)(phenyl)-phosphine *P*-Borane ((S_p)-3f). From (R_p)-2f (0.64 g, 1.52 mmol) following procedure as for 3b. Purification on silica gel eluting with toluene/hexane 9:1 then toluene afforded a colorless oil (0.42 g, 68%): R_f 0.6 (hexane/EtOAc 4:1); [α]²⁵_D +58.8 (c 1.2, CHCl₃); ¹H NMR δ 0.40–1.55 (br m, 3H), 0.97 (d, J = 6 Hz, 3H), 1.02 (d, J = 6 Hz, 3H), 1.07 (d, J = 6 Hz, 3H), 1.22 (d, J = 6 Hz, 3H), 1.46 (d, J = 11 Hz, 3H), 4.17 (sep, J = 6 Hz, 1H), 4.40 (sep, J = 6 Hz, 1H), 6.31 (d, J = 8 Hz, 1H), 6.53 (d, J = 8 Hz, 1H), 7.01 (m, 1H), 7.14–7.49 (m, 8H), 7.93 (m, 1H); ¹³C NMR δ 11.1 (d, J = 40 Hz), 21.5, 21.8, 22.20, 22.22, 69.8, 70.5, 105.76, 105.80, 120.8 (d, J = 3 Hz), 126.6 –134.5 (m), 139.7 (d, J = 2 Hz), 156.6 (J = 11 Hz); ³¹P NMR δ +12.8 (br m); MS (ESI) m/z 405.2 (100) [M⁺ — H]; HRMS (ESI) calcd for $C_{25}H_{31}BO_2P$ [M⁺ — H] 405.2155, found 405.2157.

(M, S_p)-4-Methoxy-9-phenyl-9,10-dihydro-9-phosphaphenanthrene P-Borane ((M, S_p)-4c) (Scheme 2, step iv). To a cold solution (-20 °C) of (S_p)-3c (0.10 g, 0.285 mmol) in THF (20 mL) was added s-BuLi (1.4 M in cyclohexane, 225 μ L) or MeLi (1.6 M in Et₂O, 250 μ L), and the resulting mixture was allowed to warm to rt overnight under stirring. Extraction with CH_2Cl_2/H_2O , purification on silica gel eluting with toluene/hexane 9:1 then toluene followed by recrystallization ($CH_2Cl_2/hexane$) afforded white crystals (74 mg, 81%) possessing the same characteristics as described below.

(*P*,*S*_P)-9-Phenyl-9,10-dihydro-9-phosphaphenanthrene *P*-Borane ((*P*,*S*_P)-4b) (Scheme 2, Step v). To a cold solution (-20 °C) of (R_P)-2b (0.56 g, 1.67 mmol) in THF (10 mL) was added MeLi (1.6 M in Et₂O, 4.2 mL), and the resulting mixture was allowed to warm to rt overnight under stirring. Extraction with CH₂Cl₂/H₂O, purification on silica gel eluting with toluene/hexane 7:3 and then toluene, and recrystallization (CH₂Cl₂/hexane) afforded white crystals (0.35 g, 73%): mp 204–207 °C; R_f 0.51 (toluene/hexane 4:1); [α]²⁵_D+78.5 (c 1.0, CHCl₃); ¹H NMR δ 0.40–1.65 (br m, 3H), 3.31 (dd, J = 16, 8 Hz, 1H), 3.44 (dd, J = 16, 8 Hz, 1H), 7.10–7.35 (m, 8H), 7.45 (m, 1H), 7.65 (m, 1H), 7.75 (d, J = 8 Hz, 1H), 7.91 (m, 1H), 8.00 (m, 1H); ¹³C NMR δ = 29.3 (d, J = 38 Hz), 123.1–134.6 (m), 139.7; ³¹P NMR δ –1.9 (br m); MS (ESI) m/z 287.1 (100) [M⁺ – H]; HRMS (ESI) calcd for C₁₉H₁₇BP [M⁺ – H] 287.1161, found 287.1158.

(*M*, *S*_p)-4-Methoxy-9-phenyl-9,10-dihydro-9-phosphaphenanthrene *P*-Borane ((*M*, *S*_p)-4c). From (R_p)-2c (3.54 g, 9.7 mmol) following the procedure as for 4b. Purification on silica gel eluting with toluene/hexane 9:1 (R_f 0.49) and then toluene afforded a white solid: [α]²⁵_D -14.3 (c 1.1, CHCl₃); 98% ee by HPLC on a Daicel Chiralsil AD-H column, hexane/2-PrOH 95:5, 1 mL/min, UV detection (λ = 254 nm), t_R 9.3 min (S_p), 10.8 min (R_p). White crystals (2.44 g, 79%) from CH₂Cl₂/hexane in enantiopure form: mp 138–140 °C; [α]²⁵_D -14.6 (c 1.1, CHCl₃); >99.9% ee (HPLC); ¹H NMR δ 0.40–1.55 (br m, 3H), 3.28 (m, 2H), 3.85 (s, 3H), 6.72 (d, J = 7 Hz, 1H), 6.88 (d, J = 8 Hz, 1H), 7.11–7.44 (m, 7H), 7.61 (m, 1H), 8.01 (m, 1H), 8.29 (m, 1H); ¹³C NMR δ 30.3 (d, J = 38 Hz), 55.7, 111.4 (d, J = 1 Hz), 122.7–133.3 (m), 136.9, 156.8 (d, J = 2 Hz); ³¹P NMR δ –0.2 (br m);

MS (ESI) m/z 317.1 (100) [M⁺ – H]; HRMS (ESI) calcd for $C_{20}H_{19}BOP$ [M⁺ – H] 317.1267, found 317.1265.

(*M*,*S*_P)-2,4-Dimethoxy-9-phenyl-9,10-dihydro-9-phosphaphenanthrene *P*-Borane ((*M*,*S*_P)-4d). From (R_P)-2d (0.89 g, 2.25 mmol) following the procedure as for 4b. Purification on silica gel eluting with toluene then toluene/EtOAc 50:1 afforded off-white crystals (0.08 g, 10%). Further elution with toluene/EtOAc 19:1 and then 9:1 (R_f 0.38) afforded (S_P)-3d (0.67 g, 78%; its characteristics are as described above). (*M*, S_P)-4d: mp 105–107 °C; [α]²⁵_D +34.3 (c 1.0, CHCl₃); ¹H NMR δ 0.45–1.60 (br m, 3H), 3.19 (dd, J = 16 and 8 Hz, 1H), 3.29 (dd, J = 16 and 8 Hz, 1H), 3.74 (s, 3H), 3.82 (s, 3H), 6.25 (d, J = 2 Hz, 1H), 6.43 (d, J = 2 Hz, 1H), 7.17–7.40 (m, 6H), 7.57 (m, 1H), 7.97 (m, 1H), 8.22 (m, 1H); ¹³C NMR δ 30.8 (d, J = 38 Hz), 55.2, 55.7, 98.5 (d, J = 1 Hz), 107.3 (d, J = 6 Hz), 117.0 (d, J = 7 Hz), 123.5–133.2 (m), 137.2, 158.3 (d, J = 2 Hz), 160.0; ³¹P NMR δ –1.3 (br m); MS (ESI) m/z 347.1 (100) [M⁺ – H]; HRMS (ESI) calcd for $C_{21}H_{21}BO_2P$ [M⁺ – H] 347.1372, found 347.1378.

(*M*,*S*_P)-4-Methoxy-2-methyl-9-phenyl-9,10-dihydro-9-phosphaphenanthrene *P*-Borane ((*M*,*S*_P)-4e). From (R_P)-2e (0.71 g, 1.9 mmol) following the procedure as for 4b. Purification on silica gel eluting with toluene/hexane 9:1 (R_f 0.53) and then toluene and recrystallization (CH₂Cl₂/hexane) afforded white crystals (0.49 g, 77%): mp 140–142 °C; [α]²⁵_D +10.9 (c 1.1, CHCl₃); ¹H NMR δ 0.45–1.50 (br m, 3H), 2.25 (s, 3H), 3.24 (m, 2H), 3.82 (s, 3H), 6.54 (s, 1H), 6.68 (s, 1H), 7.16–7.42 (m, 6H), 7.58 (m, 1H), 7.98 (m, 1H), 8.27 (m, 1H); ¹³C NMR δ 21.3, 30.2 (d, J = 38 Hz), 55.6, 112.4 (d, J = 1 Hz), 120.8–133.1 (m), 137.1, 139.5, 157.3 (d, J = 2 Hz); ³¹P NMR δ –0.4 (br m); MS (ESI) m/z 331.1 (100) [M⁺ – H]; HRMS (ESI) calcd for C₂₁H₂₁BOP [M⁺ – H] 331.1423, found 331.1425.

(*P*,*S*_P)-9-Phenyl-9,10-dihydro-9-phosphaphenanthrene ((*P*,*S*_P)-5b). A solution of (*P*,*S*_P)-4b (0.10 g, 0.35 mmol) in Et₂NH (3.5 mL) was refluxed for 2 h. Purification on silica gel eluting with toluene/hexane 3:2 under an inert atmosphere afforded a pale yellow oil (0.09 g, 93%): R_f 0.63 (toluene/hexane 1:1); $[\alpha]^{25}_D$ –203.0 (c 1.1, CHCl₃); ¹H NMR δ 3.07 (dd, J = 15, 10 Hz, 1H), 3.22 (dd, J = 15, 3 Hz, 1H), 6.99–7.18 (m, 8H), 7.28 (m, 1H), 7.45 (m, 1H), 7.55–7.67 (m, 2H), 7.82 (d, J = 8 Hz, 1H); ¹³C NMR δ 29.5 (d, J = 11 Hz), 125.8–136.6 (m), 139.2; ³¹P NMR δ –41.7 (s); MS (ESI) m/z 275.2 (100) [M⁺ + H]; HRMS (ESI) calcd for C₁₉H₁₆P [M⁺ + H] 275.0990, found 275.0996.

(*M*,*S*_P)-4-Methoxy-9-phenyl-9,10-dihydro-9-phosphaphenanthrene ((*M*,*S*_P)-5c). From (*M*,*S*_P)-4c (0.34 g, 1.10 mmol) following the procedure as for 5b. Purification on silica gel eluting with toluene afforded a pale yellow oil (0.32 g, 99%): R_f 0.66 (toluene/hexane 4:1); $[\alpha]^{30}_{\rm D}$ –244.0 (*c* 1.3, CHCl₃); ¹H NMR δ 2.95 (dd, *J* = 15, 9 Hz, 1H), 3.21 (dd, *J* = 15, 4 Hz, 1H), 3.77 (s, 3H), 6.68 (d, *J* = 7 Hz, 1H), 6.76 (d, *J* = 8 Hz, 1H), 7.03 (m, 1H), 7.09–7.19 (m, 5H), 7.26 (m, 1H), 7.44 (m, 1H), 7.61 (m, 1H), 8.20 (d, *J* = 8 Hz, 1H); ¹³C NMR δ 30.9 (d, *J* = 11 Hz), 55.8, 110.5, 122.2–136.5 (m), 156.7 (d, *J* = 4 Hz); ³¹P NMR δ –39.9 (s); MS (ESI) m/z 305.1 (100) [M⁺ + H]; HRMS (ESI) calcd for C₂₀H₁₈OP [M⁺ + H] 305.1095, found 305.1102

(*M*,*S*_P)-4-Methoxy-2-methyl-9-phenyl-9,10-dihydro-9-phosphaphenanthrene ((*M*,*S*_P)-5e). From (*M*,*S*_P)-4e (0.19 g, 0.58 mmol) following the procedure as for **5b**. Purification on silica gel eluting with toluene afforded a pale yellow oil (0.18 g, 99%): R_f 0.68 (toluene/hexane 4:1); $[\alpha]^{30}_{\rm D}$ –176.1 (*c* 1.7, CHCl₃); ¹H NMR δ 2.22 (s, 3H), 2.90 (dd, J = 15, 9 Hz, 1H), 3.18 (dd, J = 15, 3 Hz, 1H), 3.74 (s, 3H), 6.52 (s, 1H), 6.58 (s, 1H), 7.10–7.24 (m, 6H), 7.40 (dt, J = 8, 2 Hz, 1H), 7.54 (m, 1H), 8.17 (d, J = 8 Hz, 1H); ¹³C NMR δ 21.3, 30.8 (d, J = 11 Hz), 55.7, 111.4, 121.9–138.3 (m), 156.7 (d, J = 1 Hz); ³¹P NMR δ –39.3 (s); MS (ESI) m/z 319.1 (100) [M⁺ + H]; HRMS (ESI) calcd for $C_{21}H_{20}$ OP [M⁺ + H] 319.1252, found 319.1254.

(*M*,*R*_P)-4-Methoxy-9-phenyl-9,10-dihydro-9-phosphaphenanthrene *P*-Oxide ((*M*,*R*_P)-6c). To a cold solution (0 °C) of (*S*_P)-5c (94 mg, 0.309 mmol) in acetone (3 mL) was added $\rm H_2O_2$ (50 wt % in $\rm H_2O$, 90 μL) and the mixture stirred for 3 h at 0 °C. Extraction with EtOAc/ $\rm H_2O$ and purification on silica gel eluting with EtOAc (R_f 0.36) afforded a white foam (97 mg, 98%): [α]²⁵_D +37.5 (c 1.2, CHCl₃); ¹H NMR δ 3.36 (dd, J = 15, 14 Hz, 1H), 3.60 (dd, J = 21, 15

Hz, 1H), 3.84 (s, 3H), 6.76 (d, J = 7 Hz, 1H), 6.91 (d, J = 8 Hz, 1H), 7.13–7.61 (m, 8H), 7.96 (m, 1H), 8.23 (m, 1H); ¹³C NMR δ 34.9 (d, J = 69 Hz), 55.7, 111.6 (d, J = 2 Hz), 123.3, 123.5–131.7 (m), 137.3 (d, J = 7 Hz), 156.8 (d, J = 3 Hz); ³¹P NMR δ +23.5 (s); MS (ESI) m/z 321.1 (100) [M⁺ + H]; HRMS (ESI) calcd for $C_{20}H_{18}O_2P$ 321.1044 [M⁺ + H], found 321.1050.

(M,9S_p,10S)-4-Methoxy-9-phenyl-10-[(2S)-2-phenyl-2-hydroxyethyl]-9,10-dihydro-9-phosphaphenanthrene P-Borane. To a cold solution (-78 °C) of ($S_{\rm P}$)-4c (0.66 g, 2.1 mmol) in THF (20 mL) was added s-BuLi (1.3 M in hexane, 1.6 mL). After the solution was stirred at -78 °C for 1 h, a solution of (R)-(+)-styrene oxide (0.13 g, 1.1 mmol) in THF (4 mL) was slowly added, and the resulting mixture was allowed to warm to rt and stirred for 24 h before quenching with H2O. Extraction with CH2Cl2/H2O and purification on silica gel eluting with CH₂Cl₂/hexane 9:1 then CH₂Cl₂ afforded the title compound (0.34 g, 70%): R_f 0.32 (toluene/EtOAc 19:1); $[\alpha]^{25}$ D +41.4 (c 1.2, CHCl₃); ¹H NMR δ 0.50–1.60 (br m, 3H), 1.76 (m, 1H), 1.85 (br s, 1H), 2.33 (m, 1H), 3.23 (m, 1H), 3.82 (s, 3H), 4.90 (m, 1H), 6.51 (d, J = 7 Hz, 1H), 6.82 (d, J = 8 Hz, 1H), 7.03 (m, 1H),7.08-7.37 (m, 10H), 7.46 (m, 1H), 7.63 (m, 1H), 8.08 (m, 1H), 8.26 (m, 1H); 13 C NMR δ 36.4 (d, J = 36 Hz), 38.5 (d, J = 4 Hz), 55.7, 72.9 (d, J = 9 Hz), 111.4, 121.2–131.7 (m), 134.9 (d, J = 16 Hz), 136.7, 137.2 (d, J = 9 Hz), 143.1, 156.9 (d, J = 1 Hz); ³¹P NMR $\delta + 9.2$ (br m); MS (ESI) m/z 437.2 (100) [M⁺ – H]; HRMS (ESI) calcd for $C_{28}H_{27}BO_2P$ 437.1842 [M⁺ – H], found 437.1841.

(M,9R_P,10S)-4-Methoxy-9-phenyl-10-[(2S)-2-phenyl-2-hydroxyethyl]-9,10-dihydro-9-phosphaphenanthrene \dot{P} -Oxide (7). A solution of the previous compound (65 mg, 0.15 mmol) in Et₂NH (1.5 mL) was refluxed for 2 h under the inert atmosphere then allowed to cool to rt and concentrated. Rapid purification of the concentrated residue on silica gel eluting with toluene/EtOAc 4:1 under the inert atmosphere afforded the free phosphine as pale yellow oil (64 mg, 0.15 mmol). To this compound in acetone (2 mL) was added H_2O_2 (50 wt % in H_2O , 50 μL). After stirring at 0 °C for 3 h, the reaction mixture was partitioned between EtOAc and H2O. Purification on silica gel eluting with EtOAc and recrystallization (i-Pr₂O/CH₂Cl₂) afforded yellowish crystals (65 mg, 99%): mp 179–181 °C; R_f 0.60 (EtOAc); $[\alpha]^{25}_D$ +94.5 (c 1.0, CHCl₃); ¹H NMR δ 2.15 (m, 1H), 2.47 (m, 1H), 3.21 (m, 1H), 3.83 (s, 3H), 5.03 (m, 1H), 5.17 (m, 1H), 6.26 (d, J = 8 Hz, 1H), 6.82 (d, J = 8 Hz, 1H), 7.00 (m, 1H),7.16-7.44 (m, 10H), 7.52 (m, 1H), 7.66 (m, 1H), 8.09-8.21 (m, 2H); ¹³C NMR δ 39.3 (d, J = 61 Hz), 39.7 (d, J = 10 Hz), 55.7, 71.4 (d, J = 4 Hz), 111.7 (d, J = 1 Hz), 123.0-132.2 (m), 137.0 (d, J = 6 Hz), 137.1 (d, J = 10 Hz), 143.9, 156.8 (d, J = 2 Hz); ³¹P NMR δ +31.1 (s); MS (ESI) m/z 441.2 (100) [M⁺ + H]; HRMS (ESI) calcd for $C_{28}H_{26}O_3P$ 441.1620 [M⁺ + H], found 441.1613.

(S_p)-Spiro[(2,6-dimethoxy-2,5-cyclohexadiene)-1,1'-(3-phenyl-3-phosphindane-*P*-Borane)] ((\hat{S}_P)-8c). To a cold solution (-20°C) of (S_P) -3c (1.00 g, 2.86 mmol) in THF (15 mL) was added s-BuLi (1.3 M in cyclohexane/hexane, 2.20 mL). After the solution was stirred at $-30\ ^{\circ}\text{C}$ for 1 h, CuCl_2 (0.42 g, 3.15 mmol) was added and the reaction mixture allowed to stir for 2 h at -20 °C. The reaction mixture was quenched with H₂O at -20 °C, brought to rt, and then diluted with EtOAc, aq NH₄OH, and brine. The organic phase was washed twice with aq NH₄OH and once with brine. Purification on silica gel eluting with toluene/hexane 3:2 containing 1% of Et₃N afforded a pale yellow oil (0.43 g, 43%): R_f 0.28 (hexane/EtOAc 9:1); $[\alpha]^{25}_{D}$ +69.3 (c 1.2, CHCl₃); ¹H NMR δ 0.50–1.70 (br m, 3H), 2.66 (dd, J = 15, 12 Hz, 1H), 2.81 (dd, J = 15, 2 Hz, 1H), 2.94 (m, 1H),3.06 (m, 1H), 3.31 (s, 3H), 3.44 (s, 3H), 4.80 (app t, J = 4 Hz, 1H),4.87 (app t, J = 4 Hz, 1H), 7.20-7.26 (m, 1H), 7.29-7.47 (m, 6H), 7.69–7.76 (m, 2H); 13 C NMR δ 24.2, 34.4 (d, J = 37 Hz), 54.3, 54.6, 56.4 (d, J = 3 Hz), 90.7, 92.1, 124.7 (d, J = 9 Hz), 128.1–133.1 (m), 152.6 (d, J = 14 Hz), 155.0 (d, J = 2 Hz), 155.7 (d, J = 3 Hz); ³¹P NMR δ +36.6 (br m); MS (ESI) m/z 349.2 (100) [M⁺ – H]; HRMS (ESI) calcd for $C_{21}H_{23}BO_2P$ 349.1529 [M⁺ – H], found 349.1535.

 (S_p) -Spiro[(2,6-dimethoxy-4-oxo-2,5-cyclohexadiene)-1,1'-(3-phenyl-3-phosphindane *P*-borane)] ((S_p) -8d). From (S_p) -3d (0.67 g, 1.76 mmol) following the procedure as for 8c. Purification on silica gel eluting with CH₂Cl₂ and then hexane/EtOAc (gradient

elution from 80:20 to 20:80) and recrystallization (CH₂Cl₂/EtOAc) afforded yellow crystals (0.19 g, 30%): mp 188–192 °C; R_f 0.50 (EtOAc); [α]²⁵_D +110.5 (c 1.1, CHCl₃); ¹H NMR δ 0.50–1.70 (br m, 3H), 2.75 (dd, J = 15, 12 Hz, 1H), 2.91 (dd, J = 15, 1.4 Hz, 1H), 3.45 (s, 3H), 3.64 (s, 3H), 5.54 (d, J = 1 Hz, 1H), 5.58 (d, J = 1 Hz, 1H), 7.12 (m, 1H), 7.39–7.60 (m, 6H), 7.69 (m, 2H); ¹³C NMR δ 34.1 (d, J = 35 Hz), 55.9, 56.2, 58.0 (d, J = 3 Hz), 99.8, 100.7, 123.9 (d, J = 8 Hz), 128.4–133.6 (m), 147.8 (d, J = 13 Hz), 172.1 (d, J = 2 Hz), 173.3 (d, J = 3 Hz), 187.6; ³¹P NMR δ +41.8 (br m); MS (ESI) m/z 365.1 (25) [M⁺ + H]; HRMS (ESI) calcd for $C_{21}H_{23}BO_3P$ [M⁺ + H] 365.1478, found 365.1479.

ASSOCIATED CONTENT

Supporting Information

HPLC chromatograms of **4c**. X-ray crystallographic data for **1b**, **4c**, **7**, and **8d** (CIF). ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: barbara.mohar@ki.si, mstephan@phosphoenix.com.

Present Address

(M.S.) PhosPhoenix SARL, 115, rue de l'Abbé Groult, 75015 Paris, France.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Higher Education, Science, and Technology of the Republic of Slovenia (Grant No. P1-242). We thank Eva Jeretin for assistance.

REFERENCES

- (1) For recent literature surveys, see: (a) Grabulosa, A. P-Stereogenic Ligands in Enantioselective Catalysis, 1st ed.; RSC Publishing: Cambridge, UK, 2011. (b) Phosphorous(III) Ligands in Homogeneous Catalysis: Design and Synthesis, Kamer, P. C. J., van Leeuwen, P. W. N. M., Eds.; John Wiley & Sons, Ltd.: West Sussex, UK, 2012. (c) Phosphorus Ligands in Asymmetric Catalysis, Börner, A., Ed.; Wiley-VCH: Weinheim, 2008; Vols. 1–3.
- (2) For significant general accesses to *P*-stereogenic phosphines in particular, see: (a) Imamoto, T.; Oshiki, T.; Onozawa, T.; Kusumoto, T.; Sato, K. *J. Am. Chem. Soc.* **1990**, *112*, 5244–5252. (b) Jugé, S.; Stephan, M.; Laffitte, J. A.; Genêt, J.-P. *Tetrahedron Lett.* **1990**, *31*, 6357–6360. (c) Muci, A. R.; Campos, K. R.; Evans, D. A. *J. Am. Chem. Soc.* **1995**, *117*, 9075–9076. (d) Ohashi, A.; Kikuchi, S.; Yasutake, M.; Imamoto, T. *Eur. J. Org. Chem.* **2002**, *15*, 2535–2546. (e) Stephan, M.; Modec, B.; Mohar, B. *Tetrahedron Lett.* **2011**, *52*, 1086–1089. For enantioselective cyclization to 5-membered cyclic phosphines, see: (f) Brunker, T. J.; Anderson, B. J.; Blank, N. F.; Glueck, D. S.; Rheingold, A. L. *Org. Lett.* **2007**, *9*, 1109–1112.
- (3) For selected compilation of phosphacyclic ligands' application (ligands' acronyms: DiSquareP*, R-FerroTANE, R-CnrPHOS, TangPhos, DuanPhos, ZhangPhos, R-DuPHOS, R-BPE, RoPHOS, BASPHOS, R-BeePHOS, BINAPHANE, BINEPINEs, BINAPINE, SITCPs, etc.) in asymmetric transformations, see the Supporting Information and: (a) Reference 1. (b) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029–3069. (c) Handbook of Homogeneous Hydrogenation; de Vries, J. G., Elsevier, C. J., Eds.; Wiley-VCH: Weinheim, 2006; Vols. 1–3.
- (4) (a) Holz, J.; Genson, M.-N.; Zayas, O.; Börner, A. Curr. Org. Chem. **2007**, 11, 61–106. (b) Erre, G.; Enthaler, S.; Junge, K.; Gladiali, S.; Beller, M. Coord. Chem. Rev. **2008**, 252, 471–491.
- (5) For selected recent works on nonracemic phosphorinanes, see: (a) Kobayashi, S.; Shiraishi, N.; Lam, W.; Manabe, K. *Tetrahedron Lett.* **2001**, *42*, 7303–7306. (b) Ostermeier, M.; Prieβ, J.; Helmchen, G.

- Angew. Chem., Int. Ed. 2002, 41, 612–614. (c) Harvey, J. S.; Malcolmson, S. J.; Dunne, K. S.; Meek, S. J.; Thompson, A. L.; Schrock, R. R.; Hoveyda, A. H.; Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48, 762–766. (d) Yan, Y.; Zhang, X. Tetrahedron: Asymmetry 2006, 47, 1567–1569. (e) Doro, F.; Lutz, M.; Reek, J. N. H.; Spek, A. L.; van Leeuwen, P. W. N. M. Eur. J. Inorg. Chem. 2008, 1309–1317. (6) (a) Stephan, M.; Šterk, D.; Mohar, B. Adv. Synth. Catal. 2009, 351, 2779–2786. (b) Zupančič, B.; Mohar, B.; Stephan, M. Org. Lett. 2010, 12, 1296–1299. (c) Zupančič, B.; Mohar, B.; Stephan, M. Org. Lett. 2010, 12, 3022–3025. (d) Stephan, M.; Šterk, D.; Zupančič, B.; Mohar, B. Org. Biomol. Chem. 2011, 9, 5266–5271. (e) Mohar, B.; Stephan, M. Adv. Synth. Catal. 2013, 355, 594–600.
- (7) (S_p,S_p) -1,2-Bis[(σ -biphenylyl)(phenyl)phosphino]ethane (Cel-PHOS-P*) was prepared from (R_p) -(σ -biphenylyl)(methyl)(phenyl)phosphine P-oxide by sequential addition of n-BuLi, CuCl and CuCl₂ followed by a reduction step. For this, see: Gilheany, D.; Cumming, G. R.; King, G.; Voegler, M.; Larichev, V. WO 2008117054; CAN 149:426084.
- (8) For the preparation of (o-biphenylyl)-P-Eph 1a and (o-biphenylyl)-P-OMe 2a enantiomers, see: (a) Nettekoven, U.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Widhalm, M.; Spek, A. L.; Lutz, M. J. Org. Chem. 1999, 64, 3996–4004. (b) Colby, E. A.; Jamison, T. F. J. Org. Chem. 2003, 68, 156–166. For the preparation of (R_p)- or (S_p)-(o-biphenylyl)(methyl)(phenyl)phosphine P-borane (3a) and their use, see, for example: (c) Tsuruta, H.; Imamoto, T. Synlett 2001, 999–1002. (d) Bauduin, C.; Moulin, D.; Kaloun, E. B.; Darcel, C.; Jugé, S. J. Org. Chem. 2003, 68, 4293–4301. (e) Grabulosa, A.; Muller, G.; Ordinas, J. I.; Mezzetti, A.; Maestro, M. Á.; Font-Bardia, M.; Solans, X. Organometallics 2005, 24, 4961–4973.
- (9) (a) The corresponding 2-bromobiaryls were prepared from obromohalobenzenes either by S_NAr using O,O'-doubly stabilized 2,6-dialkoxyaryllithiums or by Suzuki cross-coupling. (b) OxazaPB ring-opening with the bulky g-Li reagent gave rise to 1g in low yield (22%) accompanied by (R_p) -trans-(N-methylamino)(phenyl)(1-phenyl-1-propenyloxy)phosphine P-borane (73%) resulting from a competitive attack on the ephedrino moiety. Therefore, reactions with 1g were not pursued further. For reaction of oxazaPB with bulky aryllithiums, see: Stephan, M.; Šterk, D.; Modec, B.; Mohar, B. J. Org. Chem. 2007, 72, 8010–8018. (c) The unsymmetrical h-Li led to a 1:1 atropodiastereomeric mixture 1h.
- (10) (a) A patent application was filed for this work: Čusak, A.; Jeretin, E.; Mohar, B.; Stephan, M. SI23833, 2011. (b) During the preparation of this manuscript, the following article appeared wherein compounds 1c, 2c, and 3c were prepared: Grabulosa, A.; Mannu, A.; Muller, G.; Calvet, T.; Font-Bardia, M. J. Organomet. Chem. 2011, 696, 2338–2345.
- (11) 1 H and 13 C NMRs showed rotational isomers for ($S_{\rm p}$)-1b but its X-ray structure analysis revealed only *P*-atropisomery (or $S_{\rm a}$). "P" here denotes the stereodescriptor "plus".
- denotes the stereodescriptor pius . (12) (a) The P-stereochemistry was assigned according to the general stereochemical course of the Jugé–Stephan route, ^{2b,e} X-ray structure analyses of (S_p) -3a (derived from (-)-ephedrine), ^{8e} and 4c (this work). (b) Ee's of $2a^{8a}$ and $3a^{8d}$ were determined by chiral HPLC.
- (13) Partial P-OMe hydrolysis arose following an unoptimized workup procedure. For example, (-)-(2',6'-dimethoxybiphenyl-2-yl) (hydroxy)(phenyl)phosphine P-borane (6%) and (-)-(2',6'-dimethoxybiphenyl-2-yl)(phenyl)phosphine P-oxide (10%) ensuing from its slow BH $_3$ loss were formed with compound 2c. (-)-(Hydroxy) (phenyl)(2',4',6'-trimethoxybiphenyl-2-yl)phosphine P-borane (10%) formed with 2d. (-)-(2',6'-Diisopropoxybiphenyl-2-yl)(phenyl)phosphine P-oxide (45%) formed with 2f.
- (14) (a) ¹H and ¹³C NMRs showed a single atropisomer for **4**, **5**, and **6**. (b) Ee (>99.9%) of **4c** was determined by chiral HPLC.
- (15) (a) P- α -Alkylation at the bridge-junction occurred with high *trans*-stereoselectivity, and the results of an ongoing broader study will be presented elsewhere. (b) Due to CIP stereochemistry rules, (R)-styrene oxide ring-opening at the terminal position leads in this case to reversal of configuration at the resulting C_{α} -OH.

- (16) Phosphine-P-borane deprotection with Et_2NH or phosphine P-oxidation with H_2O_2 proceeds with retention of P-stereochemistry. Because of CIP stereochemistry rules, the switch from "BH₃" (small) to "O" (big) reverses the P-configuration.
- (17) (a) On this basis, only compounds **4b** and **5b** of the prepared phosphacyclic series would have *P*-atropisomery (CIP rules). (b) The biaryl dihedral angles found in (M_1S_p) -**4c** are 33.6 (1)° and 34.8(1)° and in $(M_1S_p,10S)$ -7 is 33.52(8)°.
- (18) No cyclization took place when (S_p) -3c was left for 24 h in presence of anhydrous CuCl₂ in THF at rt.
- (19) For N-Me-N-Bn-anilines, a 5-exo-trig radical carbocyclization followed by a ring-strain transposition to a 6-membered ring has been proposed. For this, see: Roman, D. S.; Takahashi, Y.; Charette, A. B. Org. Lett. **2011**, *13*, 3242–3245.
- (20) Cheng, X.; Zhu, S.-F.; Qiao, X.-C.; Yan, P.-C.; Zhou, Q.-L. Tetrahedron 2006, 62, 8077-8082.
- (21) Becht, J.-M.; Ngouela, S.; Wagner, A.; Mioskowski, C. *Tetrahedron* **2004**, *60*, 6853–6857.
- (22) The X-ray crystal-structure of (S_p) -3a has been determined. For this, see ref 8e.